Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Donor and acceptor guided modes in photonic crystal fibers

Not Accessible

Your library or personal account may give you access

Abstract

We present a triangular photonic-crystal-fiber structure that exhibits guided modes simultaneously above and below the first conduction band. We achieve this configuration by decreasing the size of one of the airholes (the defect) in a specific triangular lattice. More generally, we analyze the behavior of guided modes that depends on the size of the defect. Defects generated by decreasing or increasing the size of one of the holes produce donor or acceptor guided modes, respectively, in analogy with impurity levels in solid-state crystals. We conclude that the guiding mechanism for both donor and acceptor modes is produced by a unique phenomenon of multiple interference by a periodic structure.

© 2000 Optical Society of America

Full Article  |  PDF Article
More Like This
Highly birefringent photonic crystal fibers

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell
Opt. Lett. 25(18) 1325-1327 (2000)

Analysis of air-guiding photonic bandgap fibers

Jes Broeng, Stig E. Barkou, Thomas Søndergaard, and Anders Bjarklev
Opt. Lett. 25(2) 96-98 (2000)

Silica–air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect

Stig E. Barkou, Jes Broeng, and Anders Bjarklev
Opt. Lett. 24(1) 46-48 (1999)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved