Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Efficient photonic crystal directional couplers

Not Accessible

Your library or personal account may give you access

Abstract

We demonstrate highly efficient and spectrally flat broadband coupling in photonic crystal directional couplers. The result is obtained by use of a novel design with smaller holes between coparallel photonic crystal waveguides for efficient channel-to-channel coupling. The system studied is based on a planar hexagonal photonic crystal lattice of holes made in silicon-on-insulator material. Results from three-dimensional finite-difference time domain modeling are shown to closely match results measured on fabricated samples.

© 2003 Optical Society of America

Full Article  |  PDF Article
More Like This
Ultralow-loss 3-dB photonic crystal waveguide splitter

L. H. Frandsen, P. I. Borel, Y. X. Zhuang, A. Harpøth, M. Thorhauge, M. Kristensen, W. Bogaerts, P. Dumon, R. Baets, V. Wiaux, J. Wouters, and S. Beckx
Opt. Lett. 29(14) 1623-1625 (2004)

Efficient propagation of TM polarized light in photonic crystal components exhibiting band gaps for TE polarized light

P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, Y. X. Zhuang, M. Kristensen, and H. M. H. Chong
Opt. Express 11(15) 1757-1762 (2003)

High transmission through waveguide bends by use of polycrystalline photonic-crystal structures

Ahmed Sharkawy, David Pustai, Shouyan Shi, and Dennis W. Prather
Opt. Lett. 28(14) 1197-1199 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved