Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Metabolism-enhanced tumor localization by fluorescence imaging: in vivo animal studies

Not Accessible

Your library or personal account may give you access

Abstract

We present a high-sensitivity near-infrared optical imaging system for noninvasive cancer detection and localization based on molecularly labeled fluorescent contrast agents. This frequency-domain system utilizes the interferencelike pattern of diffuse photon density waves to achieve high detection sensitivity and localization accuracy for the fluorescent heterogeneity embedded inside the scattering media. A two-dimensional localization map is obtained through reflectance probe geometry and goniometric reconstruction. In vivo measurements with a tumor-bearing mouse model by use of the novel Cypate-mono-2-deoxy-glucose fluorescent contrast agent, which targets the enhanced tumor glycolysis, demonstrate the feasibility of detection of a 2-cm-deep subsurface tumor in the tissuelike medium, with a localization accuracy within 2–3 mm.

© 2003 Optical Society of America

Full Article  |  PDF Article
More Like This
In vivo quantitative three-dimensional localization of tumor labeled with exogenous specific fluorescence markers

Israel Gannot, Avital Garashi, Gallya Gannot, Victor Chernomordik, and Amir Gandjbakhche
Appl. Opt. 42(16) 3073-3080 (2003)

Statistical approach for detection and localization of a fluorescing mouse tumor in Intralipid

Adam B. Milstein, Michael D. Kennedy, Philip S. Low, Charles A. Bouman, and Kevin J. Webb
Appl. Opt. 44(12) 2300-2310 (2005)

In vivo quantification of optical contrast agent dynamics in rat tumors by use of diffuse optical spectroscopy with magnetic resonance imaging coregistration

David J. Cuccia, Frederic Bevilacqua, Anthony J. Durkin, Sean Merritt, Bruce J. Tromberg, Gultekin Gulsen, Hon Yu, Jun Wang, and Orhan Nalcioglu
Appl. Opt. 42(16) 2940-2950 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.