Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Investigation of microdeformation-induced attenuation spectra in a photonic crystal fiber

Not Accessible

Your library or personal account may give you access

Abstract

We investigate both theoretically and experimentally the induced spectral attenuation in an all-silica photonic crystal fiber subjected to periodic axial microdeformations. The induced attenuation spectra show discrete attenuation peaks with a spectral position that is dependent on the period of the induced deformation. The peaks are assumed to be the result of mode coupling between the fundamental mode and a highly lossy higher-order mode. This assumption is verified through numerical calculation of the beat length between these two modes. Excellent agreement between experiment and numerical predictions of the spectral position of the attenuation peaks is obtained.

© 2003 Optical Society of America

Full Article  |  PDF Article
More Like This
Reduced microdeformation attenuation in large-mode-area photonic crystal fibers for visible applications

Martin D. Nielsen, Niels Asger Mortensen, and Jacob Riis Folkenberg
Opt. Lett. 28(18) 1645-1647 (2003)

Improved large-mode-area endlessly single-mode photonic crystal fibers

N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, A. Petersson, and H. R. Simonsen
Opt. Lett. 28(6) 393-395 (2003)

Deep-notch, ultracompact long-period grating in a large-mode-area photonic crystal fiber

Yinian Zhu, Ping Shum, Joo-Hin Chong, M. K. Rao, and Chao Lu
Opt. Lett. 28(24) 2467-2469 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.