Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Bragg fiber design for linear polarization

Not Accessible

Your library or personal account may give you access

Abstract

A new design is presented for Bragg fibers that allows low-loss propagation for linearly polarized light. Predictions based on a simple ray model show that approximately doubling the thickness of the first wall layer results in low losses at TM-like boundaries while keeping TE-like boundary losses manageable. This contrasts sharply with conventional quarter-wave designs that are extremely low loss for TE01 modes but very high loss for linear polarization. We fabricate Bragg fibers based on this design concept in a Si/SiO2 system and verify experimentally that they propagate linearly polarized light with losses less than 6 dB/cm over a 60-nm spectral range.

© 2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Asymptotic analysis of Bragg fibers

Yong Xu, Reginald K. Lee, and Amnon Yariv
Opt. Lett. 25(24) 1756-1758 (2000)

Resonant directional coupling of hollow Bragg fibers

Maksim Skorobogatiy, Kunimasa Saitoh, and Masanori Koshiba
Opt. Lett. 29(18) 2112-2114 (2004)

Design of dispersion-compensating Bragg fiber with an ultrahigh figure of merit

Sonali Dasgupta, Bishnu P. Pal, and M. R. Shenoy
Opt. Lett. 30(15) 1917-1919 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved