Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Strong relative intensity squeezing by four-wave mixing in rubidium vapor

Not Accessible

Your library or personal account may give you access

Abstract

We have measured 3.5dB (8.1dB corrected for losses) relative intensity squeezing between probe and conjugate beams generated by stimulated, nondegenerate four-wave mixing in hot rubidium vapor. Unlike early observations of squeezing in atomic vapors based on saturation of a two-level system, our scheme uses a resonant nonlinearity based on ground-state coherences in a three-level system. Since this scheme produces narrowband, squeezed light near an atomic resonance, it is of interest for experiments involving cold atoms or atomic ensembles.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Realization of low frequency and controllable bandwidth squeezing based on a four-wave-mixing amplifier in rubidium vapor

Cunjin Liu, Jietai Jing, Zhifan Zhou, Raphael C. Pooser, Florian Hudelist, Lu. Zhou, and Weiping Zhang
Opt. Lett. 36(15) 2979-2981 (2011)

Compact diode-laser-pumped quantum light source based on four-wave mixing in hot rubidium vapor

Zhongzhong Qin, Jietai Jing, Jun Zhou, Cunjin Liu, Raphael C. Pooser, Zhifan Zhou, and Weiping Zhang
Opt. Lett. 37(15) 3141-3143 (2012)

Multi-spatial-mode single-beam quadrature squeezed states of light from four-wave mixing in hot rubidium vapor

Neil Corzo, Alberto M. Marino, Kevin M. Jones, and Paul D. Lett
Opt. Express 19(22) 21358-21369 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved