Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

High-speed and compact silicon modulator based on a racetrack resonator with a 1 V drive voltage

Not Accessible

Your library or personal account may give you access

Abstract

Fast, compact, and power-efficient silicon microcavity electro-optic modulators are expected to be critical components for chip-level optical interconnects. It is highly desirable that these modulators can be driven by voltage swings of 1V or less to reduce power dissipation and make them compatible with voltage supply levels associated with current and future complementary metal-oxide-semiconductor technology nodes. Here, we present a silicon racetrack resonator modulator that achieves over 8dB modulation depth at 12.5Gbps with a 1V swing. In addition, the use of a racetrack resonator geometry relaxes the tight lithography resolution requirements typically associ ated with microring resonators and enhances the ability to use common lithographic optical techniques for their fabrication.

© 2010 Optical Society of America

Full Article  |  PDF Article
More Like This
Low-voltage high-speed coupling modulation in silicon racetrack ring resonators

Rui Yang, Linjie Zhou, Haike Zhu, and Jianping Chen
Opt. Express 23(22) 28993-29003 (2015)

Wavelength-tunable silicon microring modulator

Po Dong, Roshanak Shafiiha, Shirong Liao, Hong Liang, Ning-Ning Feng, Dazeng Feng, Guoliang Li, Xuezhe Zheng, Ashok V. Krishnamoorthy, and Mehdi Asghari
Opt. Express 18(11) 10941-10946 (2010)

High speed carrier-depletion modulators with 1.4V-cm VπL integrated on 0.25μm silicon-on-insulator waveguides

Ning-Ning Feng, Shirong Liao, Dazeng Feng, Po Dong, Dawei Zheng, Hong Liang, Roshanak Shafiiha, Guoliang Li, John E. Cunningham, Ashok V. Krishnamoorthy, and Mehdi Asghari
Opt. Express 18(8) 7994-7999 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved