Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Photothermal optical coherence tomography in ex vivo human breast tissues using gold nanoshells

Not Accessible

Your library or personal account may give you access

Abstract

We demonstrate photothermal optical coherence tomography (OCT) imaging in highly scattering human breast tissue ex vivo. A 120 kHz axial scan rate, swept-source phase-sensitive OCT system at 1300 nm was used to detect phase changes induced by 830 nm photothermal excitation of gold nanoshells. Localized phase modulation was observed 300600μm deep in scattering tissue using an excitation power of only 22 mW at modulation frequencies up to 20 kHz. This technique enables integrated structural and molecular-targeted imaging for cancer markers using nanoshells.

© 2010 Optical Society of America

Full Article  |  PDF Article
More Like This
Differentiation of ex vivo human breast tissue using polarization-sensitive optical coherence tomography

Fredrick A. South, Eric J. Chaney, Marina Marjanovic, Steven G. Adie, and Stephen A. Boppart
Biomed. Opt. Express 5(10) 3417-3426 (2014)

Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography

Desmond C. Adler, Shu-Wei Huang, Robert Huber, and James G. Fujimoto
Opt. Express 16(7) 4376-4393 (2008)

In vivo photothermal optical coherence tomography of gold nanorod contrast agents

J. M. Tucker-Schwartz, T. A. Meyer, C. A. Patil, C. L. Duvall, and M. C. Skala
Biomed. Opt. Express 3(11) 2881-2895 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved