Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Highly efficient nonuniform grating coupler for silicon-on-insulator nanophotonic circuits

Not Accessible

Your library or personal account may give you access

Abstract

We present design, fabrication, and characterization of a silicon-on-insulator grating coupler of high efficiency for coupling between a silicon nanophotonic waveguide and a single mode fiber. By utilizing the lag effect of the dry etching process, a grating coupler consisting of nonuniform grooves with different widths and depths is designed and fabricated to maximize the overlapping between the upward wave and the fiber mode. The measured waveguide-to-fiber coupling efficiency of 64% (−1.9 dB) for the transverse electric polarization is achieved by the present nonuniform grating coupler directly defined on a regular silicon-on-insulator wafer.

© 2010 Optical Society of America

Full Article  |  PDF Article
More Like This
Polarization-independent nonuniform grating couplers on silicon-on-insulator

Jeong Hwan Song, Fuad E. Doany, Ashenafi K. Medhin, Nicolas Dupuis, Benjamin G. Lee, and Frank R. Libsch
Opt. Lett. 40(17) 3941-3944 (2015)

Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides

Xia Chen and Hon K. Tsang
Opt. Lett. 36(6) 796-798 (2011)

Compact efficient broadband grating coupler for silicon-on-insulator waveguides

Dirk Taillaert, Peter Bienstman, and Roel Baets
Opt. Lett. 29(23) 2749-2751 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved