Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Broadband absorption enhancement in randomly positioned silicon nanowire arrays for solar cell applications

Not Accessible

Your library or personal account may give you access

Abstract

In this Letter, the optical properties of randomly positioned silicon nanowire arrays are studied. The result shows that position randomization with a filling ratio larger than 36% renders better absorptance over a broadband ranging from 300 to 1130nm compared to regular structures. The ultimate efficiency of a 48% filling ratio position randomized nanowire structure is 13.4% higher compared to the optimized regularly arranged nanowire structure with the same thickness. The absorptance enhancement of random structures is attributed to lowered reflectance, more supported resonant modes, and broadening of existing resonance.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Enhanced optical absorption in nanopatterned silicon thin films with a nano-cone-hole structure for photovoltaic applications

Qing Guo Du, Chan Hin Kam, Hilmi Volkan Demir, Hong Yu Yu, and Xiao Wei Sun
Opt. Lett. 36(9) 1713-1715 (2011)

Enhanced absorptive characteristics of metal nanoparticle-coated silicon nanowires for solar cell applications

Keya Zhou, Sang-Won Jee, Zhongyi Guo, Shutian Liu, and Jung-Ho Lee
Appl. Opt. 50(31) G63-G68 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved