Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

18 W single-stage single-frequency acoustically tailored Raman fiber amplifier

Not Accessible

Your library or personal account may give you access

Abstract

A single-mode polarization-maintaining fiber doped to increase the Raman gain while suppressing stimulated Brillouin scattering (SBS) was utilized in a single-stage counter-pumped Raman fiber amplifier. The SBS suppression was achieved through the acoustic tailoring of the core. A pump probe experiment was conducted to characterize the Brillouin gain and indicated the existence of multiple Brillouin peaks. When the amplifier was seeded with approximately 15 mW of 1178 nm light, 11.5 W of cw output power was obtained with a linewidth 2MHz. The application of a thermal gradient to further mitigate the SBS process increased the output power to 18 W, thus providing a net amplifier gain >30dB.

©2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Investigations of single-frequency Raman fiber amplifiers operating at 1178 nm

Iyad Dajani, Christopher Vergien, Craig Robin, and Benjamin Ward
Opt. Express 21(10) 12038-12052 (2013)

Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811  W output power

Craig Robin, Iyad Dajani, and Benjamin Pulford
Opt. Lett. 39(3) 666-669 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.