Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Power insensitive silicon microring resonators

Not Accessible

Your library or personal account may give you access

Abstract

We demonstrate power insensitive silicon microring resonators without the need for active feedback control. The passive control of the resonance is achieved by utilizing the compensation of two counteracting processes, free carrier dispersion blueshift and thermo-optic redshift. In the fabricated devices, the resonant wavelength shifts less than one resonance linewidth for dropped power up to 335 μW, more than fivefold improvement in cavity energy handling capability compared to regular microrings.

©2012 Optical Society of America

Full Article  |  PDF Article
More Like This
From classical four-wave mixing to parametric fluorescence in silicon microring resonators

Stefano Azzini, Davide Grassani, Matteo Galli, Lucio Claudio Andreani, Marc Sorel, Michael J. Strain, L. G. Helt, J. E. Sipe, Marco Liscidini, and Daniele Bajoni
Opt. Lett. 37(18) 3807-3809 (2012)

Bistability and self-pulsation phenomena in silicon microring resonators based on nonlinear optical effects

Shaowu Chen, Libin Zhang, Yonghao Fei, and Tongtong Cao
Opt. Express 20(7) 7454-7468 (2012)

Low power and compact reconfigurable multiplexing devices based on silicon microring resonators

Po Dong, Wei Qian, Hong Liang, Roshanak Shafiiha, Ning-Ning Feng, Dazeng Feng, Xuezhe Zheng, Ashok V. Krishnamoorthy, and Mehdi Asghari
Opt. Express 18(10) 9852-9858 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved