Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Accurate measurement of out-of-plane particle displacement from the cross correlation of sequential digital in-line holograms

Not Accessible

Your library or personal account may give you access

Abstract

A new method to quantify three-dimensional particle fields using digital in-line holography is presented. From sequentially recorded holograms, the maximum cross correlation of edge sharpness within local particle windows yields an accurate measurement of particle displacements. Experiments demonstrate out-of-plane displacement uncertainty of approximately 0.15 mean particle diameters, which is roughly an order-of-magnitude improvement compared with alternative methods. Application to shotgun pellets demonstrates robustness despite experimental noise.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Uncertainty characterization of particle depth measurement using digital in-line holography and the hybrid method

Jian Gao, Daniel R. Guildenbecher, Phillip L. Reu, and Jun Chen
Opt. Express 21(22) 26432-26449 (2013)

Quantitative, three-dimensional diagnostics of multiphase drop fragmentation via digital in-line holography

Jian Gao, Daniel R. Guildenbecher, Phillip L. Reu, Varun Kulkarni, Paul E. Sojka, and Jun Chen
Opt. Lett. 38(11) 1893-1895 (2013)

Comparison of three-dimensional particle tracking and sizing using plenoptic imaging and digital in-line holography

Elise M. Hall, Brian S. Thurow, and Daniel R. Guildenbecher
Appl. Opt. 55(23) 6410-6420 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved