Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

High average power picosecond pulse and supercontinuum generation from a thulium-doped, all-fiber amplifier

Not Accessible

Your library or personal account may give you access

Abstract

We demonstrate a high-power, picosecond, thulium-doped, all-fiber master oscillator power amplifier with average power of 120.4 W. The compact fiber oscillator is carefully designed with high repetition rate for the purpose of overcoming the detrimental effects of fiber nonlinearity in the later fiber amplifiers. The pulse duration of 16 ps at 333.75 MHz repetition rate results in a peak power of 22.5 kW in the final fiber power amplifier. To the best of our knowledge, this is the first demonstration of average power exceeding 100 W from an ultrashort pulse laser at 2 μm wavelength. On the other hand, by decreasing the fiber oscillator repetition rate and pulse duration for enhancing the fiber nonlinearity effects, we also demonstrate a high-power supercontinuum source with average power of 36 W from 1.95 μm to beyond 2.4 μm in the final fiber power amplifier.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
High average power picosecond pulse generation from a thulium-doped all-fiber MOPA system

Jiang Liu, Qian Wang, and Pu Wang
Opt. Express 20(20) 22442-22447 (2012)

High-power linearly-polarized picosecond thulium-doped all-fiber master-oscillator power-amplifier

Jiang Liu, Chen Liu, Hongxing Shi, and Pu Wang
Opt. Express 24(13) 15005-15011 (2016)

100 kW peak power picosecond thulium-doped fiber amplifier system seeded by a gain-switched diode laser at 2 μm

A. M. Heidt, Z. Li, J. Sahu, P. C. Shardlow, M. Becker, M. Rothhardt, M. Ibsen, R. Phelan, B. Kelly, S. U. Alam, and D. J. Richardson
Opt. Lett. 38(10) 1615-1617 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved