Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Low-temperature-grown InGaAs terahertz photomixer embedded in InP thermal spreading layer regrown by metalorganic chemical vapor deposition

Not Accessible

Your library or personal account may give you access

Abstract

A novel buried photomixer for integrated photonic terahertz devices is proposed. The active region of the mesa-structure InGaAs photomixer is buried in an InP layer grown by metalorganic chemical vapor deposition (MOCVD) to improve heat dissipation, which is an important problem for terahertz photomixers. The proposed photomixer shows good thermal properties compared to a conventional planar-type photomixer. The MOCVD regrowth process indicates the possibility for THz photomixers to be integrated monolithically with conventional photonic devices.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
All-optoelectronic terahertz system using low-temperature-grown InGaAs photomixers

C. Baker, I. S. Gregory, M. J. Evans, W. R. Tribe, E. H. Linfield, and M. Missous
Opt. Express 13(23) 9639-9644 (2005)

Tunable continuous-wave terahertz generation/detection with compact 1.55 μm detuned dual-mode laser diode and InGaAs based photomixer

Namje Kim, Sang-Pil Han, Hyunsung Ko, Young Ahn Leem, Han-Cheol Ryu, Chul Wook Lee, Donghun Lee, Min Yong Jeon, Sam Kyu Noh, and Kyung Hyun Park
Opt. Express 19(16) 15397-15403 (2011)

High performance 2150 nm-emitting InAs/InGaAs/InP quantum well lasers grown by metalorganic vapor phase epitaxy

S. Luo, H. M. Ji, F. Gao, F. Xu, X. G. Yang, P. Liang, and T. Yang
Opt. Express 23(7) 8383-8388 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved