Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Tunable terahertz coherent perfect absorption in a monolayer graphene

Not Accessible

Your library or personal account may give you access

Abstract

Coherent perfect absorber (CPA) was proposed as the time-reversed counterpart to laser: a resonator containing lossy medium instead of gain medium can absorb the coherent optical fields completely. Here, we exploit a monolayer graphene to realize the CPA in a nonresonant manner. It is found that quasi-CPA point exists in the terahertz regime for suspending monolayer graphene, and the CPA can be implemented with the assistance of proper phase modulation among two incident beams at the quasi-CPA frequencies. The graphene-based CPA is found of broadband angular selectivity: CPA point splits into two frequency bands for the orthogonal s and p polarizations at oblique incidence, and the two bands cover a wide frequency range starting from zero frequency. Furthermore, the coherent absorption can be tuned substantially by varying the gate-controlled Fermi energy. The findings of CPA with nonresonant graphene sheet can be generalized for potential applications in terahertz/infrared detections and signal processing with two-dimensional optoelectronic materials.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Tunable terahertz/infrared coherent perfect absorption in a monolayer black phosphorus

Xi Wang, Qian Ma, Leiming Wu, Jun Guo, Shunbin Lu, Xiaoyu Dai, and Yuanjiang Xiang
Opt. Express 26(5) 5488-5496 (2018)

Coherent perfect absorption and transparency in a nanostructured graphene film

Jianfa Zhang, Chucai Guo, Ken Liu, Zhihong Zhu, Weimin Ye, Xiaodong Yuan, and Shiqiao Qin
Opt. Express 22(10) 12524-12532 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.