Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Wideband coherent perfect absorber based on white-light cavity

Not Accessible

Your library or personal account may give you access

Abstract

We present a new concept for a broadband coherent perfect absorber (CPA), utilizing the properties of white-light cavities. The designed structure attains coherent absorption over a wide spectrum (40 nm), overcoming the single-frequency limitation of conventional CPAs. A closed form analytic description is presented, supplemented by finite difference time-domain simulations for Si-based devices, demonstrating flat, wide-band power absorption. A new integrated-optics-based pulse absorber/terminator and optical modulator based on these devices are proposed and analyzed.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Tunable terahertz coherent perfect absorption in a monolayer graphene

Yuancheng Fan, Fuli Zhang, Qian Zhao, Zeyong Wei, and Hongqiang Li
Opt. Lett. 39(21) 6269-6272 (2014)

Guided-mode resonant coherent light absorbers

J. A. Giese, J. W. Yoon, B. R. Wenner, J. W. Allen, M. S. Allen, and R. Magnusson
Opt. Lett. 39(3) 486-488 (2014)

Tunable polarization-independent coherent perfect absorber based on a metal-graphene nanostructure

Yaying Ning, Zhewei Dong, Jiangnan Si, and Xiaoxu Deng
Opt. Express 25(26) 32467-32474 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.