Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Demonstration of flat-top focusing under radial polarization illumination

Not Accessible

Your library or personal account may give you access

Abstract

We experimentally demonstrate the generation of a flat-top intensity distribution using a radially polarized vector beam. Our approach uses higher numerical aperture focusing than what has been previously reported for a single, fixed, vector beam. In addition, the flat-top focus generated in our scheme exhibits a polarization gradient along the radial coordinate in the focal volume, with an on-axis longitudinal field component that persists over 2λ, which is a stark difference from conventional flat-top fields, which exhibit intensity profiles that are uniformly polarized. Our experimental results are found to be in good agreement with the theoretical prediction.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Generation of equilateral-polygon-like flat-top focus by tightly focusing radially polarized beams superposed with off-axis vortex arrays

Xiaolei Wang, Bowen Zhu, Yuxin Dong, Shuai Wang, Zhuqing Zhu, Fang Bo, and Xiangping Li
Opt. Express 25(22) 26844-26852 (2017)

Focusing property of a double-ring-shaped radially polarized beam

Yuichi Kozawa and Shunichi Sato
Opt. Lett. 31(6) 820-822 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved