Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Ablation area quasiperiodic oscillations in semiconductors with femtosecond laser double-pulse delay

Not Accessible

Your library or personal account may give you access

Abstract

A surprising repeatable phenomenon regarding semiconductor ablation area changes has been discovered. Irradiated by femtosecond double pulses, the ablation area quasiperiodically oscillates as the pulse delay increases from 0 to 1 ps at a material-dependent fluence range. In contrast, the ablation area monotonically decreases as the pulse delay increases beyond 1 ps or if the total fluence increases close to or beyond the single-shot threshold. Similar unexpected patterns of area quasiperiodic oscillations with the double-pulse delay are observed in various semiconductors, including Ge, Si, GaAs, and ZnO. The comparison study shows the same phenomenon in Au-plated ZnO. Yet, its oscillation periods are shorter and more stable than those in bulk ZnO, which implies that the localized carrier density is the key factor in oscillation periods.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Anisotropy modulations of femtosecond laser pulse induced periodic surface structures on silicon by adjusting double pulse delay

Weina Han, Lan Jiang, Xiaowei Li, Qingsong Wang, Hao Li, and YongFeng Lu
Opt. Express 22(13) 15820-15828 (2014)

Generation and elimination of polarization-dependent ablation of cubic crystals by femtosecond laser radiation

Xin Li, Wenlong Rong, Lan Jiang, Kaihu Zhang, Cong Li, Qiang Cao, Guangming Zhang, and Yongfeng Lu
Opt. Express 22(24) 30170-30176 (2014)

Enhancement of femtosecond laser-induced surface ablation via temporal overlapping double-pulse irradiation

Zhenyuan Lin, Lingfei Ji, and Minghui Hong
Photon. Res. 8(3) 271-278 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved