Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Fiber Fabry–Perot interferometer with controllable temperature sensitivity

Not Accessible

Your library or personal account may give you access

Abstract

We proposed a fiber taper based on the Fabry–Perot (FP) interferometer structure with controllable temperature sensitivity. The FP interferometer is formed by inserting a segment of tapered fiber tip into the capillary and subsequently splicing the other end of the capillary to a single-mode fiber (SMF), the tapered fiber endface, and the spliced face form the FP cavity. Through controlling the inserted tapered fiber length, a series of FP interferometers were made. Because the inserted taper tip has the degree of freedom along the fiber axial, when the FP interferometer is subjected to temperature variation, the thermal expansion of the fiber taper tip will resist the FP cavity length change caused by the evolution of capillary length, and we can control the temperature sensitivity by adjusting the inserted taper length. In this structure, the equivalent thermal expansion coefficient of the FP interferometer can be defined; it was used to evaluate the temperature sensitivity of the FP interferometer, which provides an effective method to eliminate the temperature effect and to enhance other measurement accuracy. We fabricated the FP interferometers and calibrated their temperature characters by measuring the wavelength shift of the resonance dips in the reflection spectrum. In a temperature range of 50°C to 150°C, the corresponding temperature sensitivities can be controlled between 0 and 1.97 pm/°C when the inserted taper is between 75 and 160 μm. Because of its controllable temperature sensitivity, ease of fabrication, and low cost, this FP interferometer can meet different temperature sensitivity requirements in various application areas, especially in the fields which need temperature insensitivity.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Temperature characteristics of silicon core optical fiber Fabry–Perot interferometer

Shaolin Zhang, Ziwen Zhao, Na Chen, Fufei Pang, Zhenyi Chen, Yunqi Liu, and Tingyun Wang
Opt. Lett. 40(7) 1362-1365 (2015)

Chirped fiber tip Fabry–Perot interferometer

Xinpu Zhang, Liyang Shao, Xihua Zou, Bin Luo, Wei Pan, and Lianshan Yan
Opt. Lett. 42(17) 3474-3477 (2017)

Hollow-core fiber Fabry–Perot interferometers with reduced sensitivity to temperature

Meng Ding, Eric Numkam Fokoua, John R. Hayes, Hesham Sakr, Peter Horak, Francesco Poletti, David J. Richardson, and Radan Slavík
Opt. Lett. 47(10) 2510-2513 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.