Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Molecular frequency reference at 1.56 μm using a 12C16O overtone transition with the noise-immune cavity-enhanced optical heterodyne molecular spectroscopy method

Not Accessible

Your library or personal account may give you access

Abstract

We report on a molecular clock based on the interrogation of the 3ν rotational-vibrational combination band at 1563 nm of carbon monoxide C1612O. The laser stabilization scheme is based on the noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) technique in frequency modulation (FM) saturation spectroscopy. We use a high-finesse ultra-low expansion (ULE) glass optical cavity with CO as the molecular reference for long-term stabilization of the cavity resonance. We report an Allan deviation of 1.8×1012 at 1 s that improves to 3.5×1014 with 1000 s of averaging.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Absolute frequency stabilization of an extended-cavity diode laser by means of noise-immune cavity-enhanced optical heterodyne molecular spectroscopy

Hemanth Dinesan, Eugenio Fasci, Antonio Castrillo, and Livio Gianfrani
Opt. Lett. 39(7) 2198-2201 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.