Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Single-step optical realization of bio-inspired dual-periodic motheye and gradient-index-array photonic structures

Not Accessible

Your library or personal account may give you access

Abstract

This Letter demonstrates a single-step optical realization method for hexagonal and square lattice-based dual periodic motheye and gradient-index-array photonic structures over large areas. Computed phase mask of gradient interference patterns are used as inputs to a phase-only spatial light modulator (SLM), and the first-order diffracting beams are coherently superposed with the help of a 2f-2f Fourier filtering setup to avoid complex optical geometry for generation and control of individual beams. The simulated interference patterns are verified experimentally through a CMOS camera. The fabricated micro-structures on a positive photoresist are shown to have a major periodicity of 638 μm and minor periodicity of 25.2 μm, with the air hole diameter varying from 22.7 to 6.9 μm along the X and Y axes. The depth of the fabricated structure gradually varies from 4.203 μm at the center to 1.818 μm at the corner. These structures may be scaled down to submicron features that can show improved anti-reflection properties for solar energy harvesting and GRIN lens for optical wavelength region.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Submicrometer photonic structure fabrication by phase spatial-light-modulator-based interference lithography

Saraswati Behera, Manish Kumar, and Joby Joseph
Opt. Lett. 41(8) 1893-1896 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.