Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Combination of reaction ion etching and dynamic chemical etching for improving laser damage resistance of fused silica optical surfaces

Not Accessible

Your library or personal account may give you access

Abstract

In this Letter, an effective combined process of reaction ion etching (RIE) and dynamic chemical etching (DCE) is applied for significantly improving the damage resistance of fused silica optics, while minimizing the removal amount. By optimizing the combination process and removal depth, a near-perfect optical surface of fused silica with relatively low roughness (<0.7nm) is created with 1 μm RIE pretreatment and 3 μm DCE retreatment. In this case, the sample has a 2.4 times enhanced 0% probability damage threshold compared to the original sample. We show that the optimized combining process with a low removal amount is superior to a conventional HF-based etching process with a high removal amount in enhancing damage resistance and controlling the surface shape and roughness of fused silica. The results advance our understanding of a key factor influencing the RIE-DCE matching relationship and can lead to further optimization of associated applications, ranging from material processing to high-power laser systems.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Effects of combined process of reactive ion etching and dynamic chemical etching on UV laser damage resistance and surface quality of fused silica optics

Laixi Sun, Jin Huang, Ting Shao, Xin Ye, Qingzhi Li, Xiaodong Jiang, Weidong Wu, Liming Yang, and Wanguo Zheng
Opt. Express 26(14) 18006-18018 (2018)

Reaction ion etching process for improving laser damage resistance of fused silica optical surface

Laixi Sun, Hongjie Liu, Jin Huang, Xin Ye, Handing Xia, Qingzhi Li, Xiaodong Jiang, Weidong Wu, Liming Yang, and Wanguo Zheng
Opt. Express 24(1) 199-211 (2016)

Ground fused silica processed by combined chemical etching and CO2 laser polishing with super-smooth surface and high damage resistance

Zhen Cao, Chaoyang Wei, Xin Cheng, Yuanan Zhao, Xiaocong Peng, Zhigang Jiang, and Jianda Shao
Opt. Lett. 45(21) 6014-6017 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.