Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Large-scale nanostructured low-temperature solar selective absorber

Not Accessible

Your library or personal account may give you access

Abstract

A large-scale nanostructured low-temperature solar selective absorber is demonstrated experimentally. It consists of a silicon dioxide thin film coating on a rough refractory tantalum substrate, fabricated based simply on self-assembled, closely packed polystyrene nanospheres. Because of the strong light harvesting of the surface nanopatterns and constructive interference within the top silicon dioxide coating, our absorber has a much higher solar absorption (0.84) than its planar counterpart (0.78). Though its absorption is lower than that of commercial black paint with ultra-broad absorption, the greatly suppressed absorption/emission in the long range still enables a superior heat accumulation. The working temperature is as high as 196.3°C under 7-sun solar illumination in ambient conditions—much higher than those achieved by the two comparables.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region

Dong Wu, Chang Liu, Yumin Liu, Li Yu, Zhongyuan Yu, Lei Chen, Rui Ma, and Han Ye
Opt. Lett. 42(3) 450-453 (2017)

Spectral selectivity of high-temperature solar absorbers

D. M. Trotter and A. J. Sievers
Appl. Opt. 19(5) 711-728 (1980)

Designing ultrabroadband absorbers based on Bloch theorem and optical topological transition

Y. H. Kan, C. Y. Zhao, X. Fang, and B. X. Wang
Opt. Lett. 42(10) 1879-1882 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved