Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Sub-Doppler resolution near-infrared spectroscopy at 1.28 μm with the noise-immune cavity-enhanced optical heterodyne molecular spectroscopy method

Not Accessible

Your library or personal account may give you access

Abstract

We report on the sub-Doppler saturation spectroscopy of the nitrous oxide (N2O) overtone transition at 1.28 μm. This measurement is performed by the noise-immune cavity-enhanced optical heterodyne molecular spectroscopy technique based on the quantum-dot (QD) laser. A high intra-cavity power, up to 10 W, reaches the saturation limit of the overtone line using an optical cavity with a high finesse of 1.14(5)×105. At a pressure of several mTorr, the saturation dip is observed with a full width at half-maximum of about 2 MHz and a signal-to-noise ratio of 71. To the best of our knowledge, this is the first saturation spectroscopy of molecular overtone transitions in the 1.3 μm region. The QD laser is then locked to this dispersion signal with a stability of 15 kHz at 1 s integration time. We demonstrate the potential of the N2O as a marker because of its particularly rich spectrum at the vicinity of 1.28–1.30 μm where there are several important forbidden transitions of atomic parity violation measurements and the 1.3 μm O-band of optical communication.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Molecular frequency reference at 1.56  μm using a 12C16O overtone transition with the noise-immune cavity-enhanced optical heterodyne molecular spectroscopy method

Shailendhar Saraf, Paul Berceau, Alberto Stochino, Robert Byer, and John Lipa
Opt. Lett. 41(10) 2189-2192 (2016)

Whispering-gallery-mode laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry

Gang Zhao, Thomas Hausmaninger, Weiguang Ma, and Ove Axner
Opt. Lett. 42(16) 3109-3112 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.