Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Coupled-resonator-induced plasmonic bandgaps

Not Accessible

Your library or personal account may give you access

Abstract

By drawing an analogy with the conventional photonic crystals, the plasmonic bandgaps have mainly employed the periodic metallic structures, named as plasmonic crystals. However, the sizes of the plasmonic crystals are much larger than the wavelengths, and the large sizes considerably decrease the density of the photonic integration circuits. Here, based on the coupled-resonator effect, the plasmonic bandgaps are experimentally realized in the subwavelength waveguide-resonator structure, which considerably decreases the structure size to subwavelength scales. An analytic model and the phase analysis are established to explain this phenomenon. Both the experiment and simulation show that the plasmonic bandgap structure has large fabrication tolerances (>20%). Instead of the periodic metallic structures in the bulky plasmonic crystals, the utilization of the subwavelength plasmonic waveguide-resonator structure not only significantly shrinks the bandgap structure to be about λ2/13, but also expands the physics of the plasmonic bandgaps. The subwavelength dimension, together with the waveguide configuration and robust realization, makes the bandgap structure easy to be highly integrated on chips.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Multiple plasmon-induced transparencies in coupled-resonator systems

Jianjun Chen, Chen Wang, Ru Zhang, and Jinghua Xiao
Opt. Lett. 37(24) 5133-5135 (2012)

Plasmonic-induced absorption in an end-coupled metal-insulator-metal resonator structure

Kunhua Wen, Yihua Hu, Jinyun Zhou, Liang Lei, Jianfeng Li, and Yanjie Wu
Opt. Mater. Express 7(2) 433-443 (2017)

Plasmon-induced transparency based on a triangle cavity coupled with an ellipse-ring resonator

Ali Akhavan, Hassan Ghafoorifard, Saeed Abdolhosseini, and Hamidreza Habibiyan
Appl. Opt. 56(34) 9556-9563 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved