Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Extinction by a homogeneous spherical particle in an absorbing medium

Not Accessible

Your library or personal account may give you access

Abstract

We use a recent computer implementation of the first-principles theory of electromagnetic scattering to compute far-field extinction by a spherical particle embedded in an absorbing unbounded host. Our results show that the suppressing effect of increasing absorption inside the host medium on the ripple structure of the extinction efficiency factor as a function of the size parameter is similar to the well-known effect of increasing absorption inside a particle embedded in a nonabsorbing host. However, the accompanying effects on the interference structure of the extinction efficiency curves are diametrically opposite. As a result, sufficiently large absorption inside the host medium can cause negative particulate extinction. We offer a simple physical explanation of the phenomenon of negative extinction consistent with the interpretation of the interference structure as being the result of interference of the field transmitted by the particle and the diffracted field due to an incomplete wavefront resulting from the blockage of the incident plane wave by the particle’s geometrical projection.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Mie-scattering formalism for spherical particles embedded in an absorbing medium

I. Wayan Sudiarta and Petr Chylek
J. Opt. Soc. Am. A 18(6) 1275-1278 (2001)

Mie theory for light scattering by a spherical particle in an absorbing medium

Qiang Fu and Wenbo Sun
Appl. Opt. 40(9) 1354-1361 (2001)

Measuring extinction with digital holography: nonspherical particles and experimental validation

Matthew J. Berg, Nava R. Subedi, and Peter A. Anderson
Opt. Lett. 42(5) 1011-1014 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved