Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Overcoming the speckle correlation limit to achieve a fiber wavemeter with attometer resolution

Not Accessible

Your library or personal account may give you access

Abstract

The measurement of the wavelength of light using speckle is a promising tool for the realization of compact and precise wavemeters and spectrometers. However, the resolution of these devices is limited by strong correlations between the speckle patterns produced by closely spaced wavelengths. Here, we show how principal component analysis of speckle images provides a route to overcome this limit. Using this, we demonstrate a compact wavemeter that measures attometer-scale wavelength changes of a stabilized diode laser, eight orders of magnitude below the speckle correlation limit.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Femtometer-resolved simultaneous measurement of multiple laser wavelengths in a speckle wavemeter

Graham D. Bruce, Laura O’Donnell, Mingzhou Chen, Morgan Facchin, and Kishan Dholakia
Opt. Lett. 45(7) 1926-1929 (2020)

High-resolution wavemeter using Rayleigh speckle obtained by optical time domain reflectometry

Yangyang Wan, Shuai Wang, Xinyu Fan, Zhaopeng Zhang, and Zuyuan He
Opt. Lett. 45(4) 799-802 (2020)

Rayleigh speckle-based wavemeter with high dynamic range and fast reference speckle establishment process assisted by optical frequency combs

Yangyang Wan, Xinyu Fan, Shuai Wang, Zhaopeng Zhang, Bingxin Xu, and Zuyuan He
Opt. Lett. 46(6) 1241-1244 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved