Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

All-optical diffractive neural networked terahertz hologram

Not Accessible

Your library or personal account may give you access

Abstract

Holography has garnered an explosion of interest in tremendous applications, owing to its capability of storing amplitude and phase of light and reconstructing the full-wave information of targets. Spatial light modulators, metalenses, metasurfaces, and other devices have been explored to achieve holographic images. However, the required phase distributions for conventional holograms are generally calculated using the Gerchberg–Saxton algorithm, and the iteration is time-consuming without Fourier transform or other acceleration techniques. Few studies on designing holograms using artificial intelligence methods have been conducted. In this Letter, a three-dimensional (3D)-printed hologram for terahertz (THz) imaging based on a diffractive neural network (DNN) is proposed. Target imaging letters “THZ” with uniform field amplitude are assigned to a predefined imaging surface. Quantified phase profiles are primarily obtained by training the DNN with the target image and input field pattern. The entire training process takes only 60 s. Consequently, the hologram, that is, a two-dimensional array of dielectric posts with variational heights that store phase information, is fabricated using a 3D printer. The full-wave simulation and experimental results demonstrate the capability of the proposed hologram to achieve high-quality imaging in the THz regime. The proposed lens and design strategy may open new possibilities in display, optical-data storage, and optical encryption.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Reconfigurable origami hologram based on deep neural networks

Kang Wang, DaShuang Liao, and Haogang Wang
Opt. Lett. 49(8) 2041-2044 (2024)

Dynamic-range compression scheme for digital hologram using a deep neural network

Tomoyoshi Shimobaba, David Blinder, Michal Makowski, Peter Schelkens, Yota Yamamoto, Ikuo Hoshi, Takashi Nishitsuji, Yutaka Endo, Takashi Kakue, and Tomoyoshi Ito
Opt. Lett. 44(12) 3038-3041 (2019)

Modeling and simulation of all-optical diffractive neural network based on nonlinear optical materials

Yichen Sun, Mingli Dong, Mingxin Yu, Lidan Lu, Shengjun Liang, Jiabin Xia, and Lianqing Zhu
Opt. Lett. 47(1) 126-129 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.