Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Highly efficient deep UV generation by four-wave mixing in gas-filled hollow-core photonic crystal fiber

Not Accessible

Your library or personal account may give you access

Abstract

We report on a highly efficient experimental scheme for the generation of deep-ultraviolet (UV) ultrashort light pulses using four-wave mixing in gas-filled kagomé-style photonic crystal fiber. By pumping with ultrashort, few microjoule pulses centered at 400 nm, we generate an idler pulse at 266 nm and amplify a seeded signal at 800 nm. We achieve remarkably high pump-to-idler energy conversion efficiencies of up to 38%. Although the pump and seed pulse durations are 100fs, the generated UV spectral bandwidths support sub-15 fs pulses. These can be further extended to support few-cycle pulses. Four-wave mixing in gas-filled hollow-core fibers can be scaled to high average powers and different spectral regions such as the vacuum UV (100–200 nm).

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Generation of broadband circularly polarized deep-ultraviolet pulses in hollow capillary fibers

Athanasios Lekosiotis, Federico Belli, Christian Brahms, and John C. Travers
Opt. Lett. 45(20) 5648-5651 (2020)

Ionization-induced adiabatic soliton compression in gas-filled hollow-core photonic crystal fibers

Z. Y. Huang, Y. F. Chen, F. Yu, D. K. Wu, Y. Zhao, D. Wang, and Y. X. Leng
Opt. Lett. 44(22) 5562-5565 (2019)

Gas mixture for deep-UV plasma emission in a hollow-core photonic crystal fiber

F. Amrani, F. Delahaye, B. Debord, L. L. Alves, F. Gerome, and F. Benabid
Opt. Lett. 42(17) 3363-3366 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved